Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Malin Hannah Sandström and Dan Boström*

Energy Technology and Thermal Process Chemistry, Umeå University, SE-901 87 Umeå, Sweden

Correspondence e-mail:
dan.bostrom@chem.umu.se

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{P}-\mathrm{O})=0.004 \AA$
R factor $=0.026$
$w R$ factor $=0.064$
Data-to-parameter ratio $=16.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
$\mathrm{Ca}_{10} \mathrm{~K}\left(\mathrm{PO}_{4}\right)_{7}$ from single-crystal data

Crystals of decacalcium potassium heptakis(orthophosphate), $\mathrm{Ca}_{10} \mathrm{~K}\left(\mathrm{PO}_{4}\right)_{7}$, were obtained from a melt. The structure of $\mathrm{Ca}_{10} \mathrm{~K}\left(\mathrm{PO}_{4}\right)_{7}$ is isostructural with $\beta-\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ and has been determined previously [Morozov, Presnyakov, Belik, Khasanov \& Lazoryak (2000). Crystallogr. Rep. 45, 19-26]. The present investigation confirms the previous study, but with higher precision and with all displacement parameters refined anisotropically. The structure contains four Ca , one K , three P and ten unique O atoms, of which the K , one Ca , one P and one O atom are located on threefold rotation axes.

Comment

The structure determination of phases in the $\mathrm{CaO}-\mathrm{K}_{2} \mathrm{O}-\mathrm{P}_{2} \mathrm{O}_{5}$ system is part of an extensive study of the structural and thermodynamic characteristics of these compounds. Crystal structures already determined during this study are $\mathrm{CaK}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (Sandström et al., 2003) and $\mathrm{CaKP}_{3} \mathrm{O}_{9}$ (Sandström \& Boström, 2004). We report here the crystal structure of $\mathrm{Ca}_{10} \mathrm{~K}\left(\mathrm{PO}_{4}\right)_{7}$, which is isostructural with $\beta-\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ (Dickens et al., 1974). The structure of $\mathrm{Ca}_{10} \mathrm{~K}\left(\mathrm{PO}_{4}\right)_{7}$ has previously been reported by Morozov et al. (2000), who refined the structure from X-ray powder diffraction data using the coordinates of $\beta-\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ as starting parameters for the Rietveld refinement.

Figure 1
A view of the asymmetric unit of $\mathrm{Ca}_{10} \mathrm{~K}\left(\mathrm{PO}_{4}\right)_{7}$, shown with anisotropic displacement ellipsoids drawn at the 50% probability level.

Figure 2
(a) A projection of the crystal structure of $\mathrm{Ca}_{10} \mathrm{~K}\left(\mathrm{PO}_{4}\right)_{7}$ along the c axis, depicting the A and B columns. (b) The polyhedra for $\mathrm{Ca}_{5} \mathrm{O}_{6}$ and $\mathrm{K}_{1} \mathrm{O}_{9}$, together with ${\mathrm{P} 1 \mathrm{O}_{4}}^{0}$ in the A column. (c) The phosphate layers. (d) The polyhedra for $\mathrm{Ca} 1-\mathrm{Ca} 3$, together with $\mathrm{P}_{2} \mathrm{O}_{4}$ and $\mathrm{P} 3 \mathrm{O}_{4}$.
$\beta-\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ allows for iso- and heterovalent substitutions of Ca^{2+} by $M^{+}(M=\mathrm{Li}, \mathrm{K}$ and Na$)$ (Morozov et al., 1997, 2000; Belik et al., 1999; Belik, Gutan et al., 2001), $M^{2+}(M=\mathrm{Mg}, \mathrm{Mn}$, $\mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Ga}, \mathrm{Sr}$ and Cd) (Schroeder et al., 1977; Bigi et al., 1996; Belik et al., 1998; Khan et al., 1997; Belik, Gutan et al., 2001; Jakeman et al., 1989; Nord, 1983; Morozov et al., 1997, 2000; Belik, Yanov \& Lazoryak, 2001; Belik et al., 1999; Gopal et al., 1974; Kostiner \& Rea, 1976), M^{3+} ($M=\mathrm{Sc}, \mathrm{Cr}, \mathrm{Fe}, \mathrm{Ga}$, In and rare-earth metals) (Lazoryak et al., 1996; Golubev et al., 1990; Golubev \& Lazoryak, 1991) and Ce^{4+} cations (Kotov et al., 1997). In the structure of β - $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{3}$, rare-earth cations should occupy the $M 1-M 3$ sites (general sites), cations that have a radius smaller than $0.8 \AA$ should occupy the octahedral $M 5$ site, and cations with a radius of $\sim 1.5 \AA$ may occupy the M4 site (Lazoryak, 1996). Thus, the title compound presumably represents one end-member of a solid solution series. Lazoryak (1996) also reported a number of compounds including not only phosphates but also vanadates (Gopal \& Calvo, 1973; Evans et al., 2001; Belik et al., 2000), arsenates (Gopal \& Calvo, 1971) and a few silicates (Moore \& Shen, 1983) as being structurally related to $\beta-\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$.

The asymmetric unit of $\mathrm{Ca}_{10} \mathrm{~K}\left(\mathrm{PO}_{4}\right)_{7}$ is displayed in Fig. 1. The crystal structure is built up by double layers of orthophosphate groups. Parallel to the c axis, two different columns can be identified. The A column runs along the threefold rotation axis (Wyckoff letter 6a), through the Ca1, Ca5 and P1 polyhedra. The B column is parallel to the A column and runs through the $\mathrm{P} 2, \mathrm{P} 3, \mathrm{Ca} 1$ and Ca 2 polyhedra (Fig. 2). The three

Ca ions, $\mathrm{Ca} 1-\mathrm{Ca} 3$, are situated between the phosphate layers, while Ca 5 and the K^{+}ion are situated within the phosphate layers. The K^{+}ion occupies a position equivalent to the Ca 4 site in the $\beta-\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ structure, slightly above the plane formed by three O 21 atoms. K^{+}is coordinated by nine O atoms, $\left[\mathrm{KO} 12_{3} \mathrm{O} 21_{3} \mathrm{O} 22_{3}\right]$, with distances ranging from 2.641 (3) to 3.250 (4) \AA (Table 1). The Ca ions show different coordination numbers (CN). Ca1 is nine-coordinate, Ca 2 and Ca 3 have $\mathrm{CN}=8$, whereas Ca 5 has a distorted octahedral coordination $(\mathrm{CN}=6)$. The $\mathrm{Ca}-\mathrm{O}$ distances of $\mathrm{Ca} 1, \mathrm{Ca} 2$ and Ca 3 do vary, but are within the range of previously reported $\mathrm{Ca}-\mathrm{O}$ bond lengths (International Tables for X-ray Crystallography, 1962). The octahedrally coordinated Ca exhibits $\mathrm{Ca}-\mathrm{O}$ distances between 2.239 (4) and 2.267 (4) \AA, the eightfold-coordinate Ca 2 and Ca 3 have $\mathrm{Ca}-\mathrm{O}$ distances between 2.329 (3) and 2.986 (4) \AA, and Ca 1 shows $\mathrm{Ca}-\mathrm{O}$ distances between 2.393 (3) and 2.999 (4) \AA. The orthophosphate tetrahedra are quite regular, with $\mathrm{P}-\mathrm{O}$ distances between 1.524 (5) and 1.546 (3) \AA (Table 1).

Experimental

Crystals of $\mathrm{Ca}_{10} \mathrm{~K}\left(\mathrm{PO}_{4}\right)_{7}$ were obtained from a synthesis originally intended to yield a compound with composition CaKPO_{4}. The starting mixture consisted of CaCO_{3} (Riedel-de-Haën, 98%) and $\mathrm{KH}_{2} \mathrm{PO}_{4}$ (Merck, p.a.) in a 2:1 molar ratio. This mixture was placed in an alumina crucible and kept at 1323 K for about one month. Probably due to vaporization of potassium and some phosphorus, the composition of the melt shifted in the direction towards the title compound. X-ray powder diffraction data were collected afterwards on the synthesis batch. The material was found to be mainly amorphous. A Rietveld refinement was carried out using the present model as a start, but only cell parameters were refined. No significant shift compared with the single-crystal model was observed.

Crystal data

$\mathrm{Ca}_{10} \mathrm{~K}\left(\mathrm{PO}_{4}\right)_{7}$
$M_{r}=1104.69$
Trigonal, R3c
$a=10.4630$ (4) \AA
$c=37.241$ (1) \AA
$V=3530.7$ (2) \AA^{3}
$Z=6$

Data collection

Nonius KappaCCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{\text {min }}=0.681, T_{\text {max }}=0.814$

Refinement

[^1]$D_{x}=3.117 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=3.01 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Fragment, colourless
$0.24 \times 0.13 \times 0.07 \mathrm{~mm}$

30685 measured reflections 2300 independent reflections 2257 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.072$
$\theta_{\text {max }}=30.0^{\circ}$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.70 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.72 \mathrm{e}^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 1997)
Extinction coefficient: 0.00067 (5)
Absolute structure: Flack (1983), with 1145 Friedel Pairs
Flack parameter: 0.41 (4)

Table 1
Selected bond lengths (\AA).

$\mathrm{Ca} 1-\mathrm{O} 23{ }^{\text {i }}$	2.393 (3)	Ca3-O21	2.405 (3)
Ca1-O34	2.396 (3)	$\mathrm{Ca} 3-\mathrm{O} 31{ }^{\text {vii }}$	2.435 (3)
$\mathrm{Ca} 1-\mathrm{O} 11^{\text {ii }}$	2.4914 (16)	$\mathrm{Ca} 3-\mathrm{O} 22^{\text {viii }}$	2.440 (3)
$\mathrm{Ca} 1-\mathrm{O} 22^{\text {iii }}$	2.535 (3)	Ca3-O34	2.731 (3)
$\mathrm{Ca} 1-\mathrm{O} 33^{\text {iii }}$	2.558 (3)	$\mathrm{Ca} 3-\mathrm{O} 33^{\text {vii }}$	2.762 (3)
Ca1-O32	2.582 (3)	Ca5-O24	2.239 (4)
$\mathrm{Ca} 1-\mathrm{O} 22$	2.597 (3)	Ca5-O31	2.267 (4)
$\mathrm{Ca} 1-\mathrm{O} 21^{\text {i }}$	2.713 (3)	K1-O21	2.641 (3)
$\mathrm{Ca} 1-\mathrm{O} 12^{\text {iv }}$	2.999 (4)	K1-O12	3.054 (4)
Ca2-O33 ${ }^{\text {iii }}$	2.329 (3)	K1-O22	3.250 (4)
$\mathrm{Ca} 2-\mathrm{O} 32^{\text {v }}$	2.399 (3)	P1-O11	1.524 (5)
Ca2-O34	2.413 (3)	P1-O12	1.545 (3)
$\mathrm{Ca} 2-\mathrm{O} 24^{\text {v }}$	2.425 (3)	$\mathrm{P} 2-\mathrm{O} 21$	1.533 (3)
$\mathrm{Ca} 2-\mathrm{O} 24^{\text {vi }}$	2.457 (3)	P2-O22	1.531 (3)
$\mathrm{Ca} 2-\mathrm{O} 12{ }^{\text {i }}$	2.473 (3)	$\mathrm{P} 2-\mathrm{O} 23$	1.546 (3)
$\mathrm{Ca} 2-\mathrm{O} 23^{\text {vi }}$	2.522 (3)	P2-O24	1.545 (3)
$\mathrm{Ca} 2-\mathrm{O} 22^{\text {v }}$	2.986 (4)	P3-O31	1.538 (3)
$\mathrm{Ca} 3-\mathrm{O} 23^{\text {vi }}$	2.361 (3)	P3-O32	1.531 (3)
Ca3-O12	2.390 (3)	P3-O33	1.530 (3)
Ca3-O31	2.393 (3)	P3-O34	1.536 (3)

Symmetry codes: (i) $-x+y,-x, z$; (ii) $-x+y+\frac{2}{3}, y+\frac{1}{3}, z-\frac{1}{6}$; (iii) $-y+1, x-y$, z; (iv) $-y+\frac{2}{3},-x+\frac{1}{3}, z-\frac{1}{6}$; (v) $-x+y+\frac{1}{3}, y-\frac{1}{3}, z+\frac{1}{6} ; \quad$ (vi) $\quad x+\frac{1}{3}, x-y+\frac{2}{3}, z+\frac{1}{6} ; \quad$ (vii) $-x+y,-x+1, z ;$ (viii) $-y+\frac{1}{3},-x+\frac{2}{3}, z+\frac{1}{6}$.

Attempts to solve the structure in any corresponding centrosymmetric space group failed. The refined Flack (1983) parameter is indicative of inversion twinning of the structure.

Data collection: COLLECT (Nonius, 1999); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski \& Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: SHELXL97 and local procedures.

This work was supported by the Swedish Energy Agency.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Belik, A. A., Grechkin, S. V., Dmitrienko, L. O., Morozov, V. A., Khasanov, S. S. \& Lazoryak, B. I. (2000). Crystallogr. Rep. 45, 896-901.

Belik, A. A., Gutan, V. B., Ivanov, L. N. \& Lazoryak, B. I. (2001). Russ. J. Inorg. Chem. 46, 785-792.
Belik, A. A., Morozov, V. A., Khasanov, S. S. \& Lazoryak, B. I. (1998). Mater. Res. Bull. 33, 987-995.
Belik, A. A., Morozov, V. A., Khasanov, S. S. \& Lazoryak, B. I. (1999). Mater. Res. Bull. 34, 883-893.
Belik, A. A., Yanov, O. V. \& Lazoryak, B. I. (2001). Mater. Res. Bull. 36, 18631871.

Bigi, A., Falini, G., Foresti, E., Ripamonti, A., Gazzano, M. \& Roveri, N. (1996). Z. Kristallogr. 211, 13-16.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Dickens, B., Schroeder, L. W. \& Brown, W. E. (1974). J. Solid State Chem. 10, 232-248.
Dowty, E. (2000). ATOMS for Windows and Macintosh. Version 5.1. Shape Software, Kingsport, Tennessee, USA.
Evans, J. S. O., Huang, J. \& Sleight, A. W. (2001). J. Solid State Chem. 157, $255-$ 260.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Golubev, V. N. \& Lazoryak, B. I. (1991). Inorg. Mater. 27, 480-483.
Golubev, V. N., Viting, B. N., Dogadin, O. B., Lazoryak, B. I. \& Aziev, R. G. (1990). Zh. Neorg. Khim. 35, 3037-3041. (In Russian).

Gopal, R. \& Calvo, C. (1971). Can. J. Chem. 49, 1036-1046.
Gopal, R. \& Calvo, C. (1973). Z. Kristallogr. 137, 67-85.
Gopal, R., Calvo, C., Ito, J. \& Sabine, W. K. (1974). Can. J. Chem. 52, $1155-$ 1164.

International Tables for X-ray Crystallography (1962). Vol. III, p. 160. Birmingham: Kynoch Press.
Jakeman, R. J. B., Cheetham, A. K., Clayden, N. J. \& Dobson, C. M. (1989). J. Solid State Chem. 78, 23-34.
Khan, N., Morozov, V. A., Khasanov, S. S. \& Lazoryak, B. I. (1997). Mater. Res. Bull. 32, 1211-1220.
Kostiner, E. \& Rea, J. R. (1976). Acta Cryst. B32, 250-253.
Kotov, R. N., Morozov, V. A., Khasanov, S. S. \& Lazoryak, B. I. (1997). Kristallografiya, 42, 1027-1033.
Lazoryak, B. I. (1996). Russ. Chem. Rev. 65, 287-305.
Lazoryak, B. I., Morozov, V. A., Belik, A. A., Khasanov, S. S. \& Shekhtman, V. S. (1996). J. Solid State Chem. 122, 15-21.

Moore, P. B. \& Shen, J. (1983). Am. Mineral. 68, 996-1003.
Morozov, V. A., Belik, A. A., Kotov, R. N., Presnyakov, I. A., Khasanov, S. S. \& Lazoryak, B. I. (2000). Crystallogr. Rep. 45, 19-26.
Morozov, V. A., Presnyakov, I. A., Belik, A. A., Khasanov, S. S. \& Lazoryak, B. I. (1997). Crystallogr. Rep. 42, 758-769.

Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
Nord, A. G. (1983). Neues Jahrb. Miner. Monatsh. 1983, 489-497.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sandström, M. \& Boström, D. (2004). Acta Cryst. E60, i15-i17.
Sandström, M., Fischer, A. \& Boström, D. (2003). Acta Cryst. E59, i139-i141.
Schroeder, L. W., Dickens, B. \& Brown, W. E. (1977). J. Solid State Chem. 22, 253-62.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

[^1]: Refinement on F^{2}
 $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
 $w R\left(F^{2}\right)=0.064$
 $S=1.09$
 2300 reflections
 141 parameters
 $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0247 P)^{2}\right.$
 $+16.2214 P]$
 where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$

